Secoiridoid Glycosides from Gentiana scabra

Masao Kikuchi,* Rie Kakuda, Masafumi Kikuchi, and Yasunori Yaoita

Department of 2nd Analytical Chemistry, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan

Received February 9, 2005

Six new secoiridoid glycosides, gentiascabraside A (1), 6β -hydroxyswertiajaposide A (2), 1-O- β -D-glucopyranosyl-4-epiamplexine (3), and scabrans G₃ (4), G₄ (5), and G₅ (6), have been isolated from the rhizomes and roots of *Gentiana scabra* together with a known compound, swertiajaposide A (7). The structures of the new compounds were determined by spectroscopic (NMR, MS) and chemical means.

The rhizomes and roots of Gentiana scabra Bunge (Gentianaceae) are the crude drug Gentianae Scabrae Radix, used as a stomachic or stimulant of appetite in Japan.¹ The constituents of this crude drug have been previously investigated and shown to contain secoiridoid glycosides.¹⁻³ It has been reported that several secoiridoid glycosides exhibit smooth muscle relaxing,⁴ antibacterial,⁵ free radical scavenging,⁵ and choleretic activities.⁶ In previous papers, we reported the isolation and structural elucidation of secoiridoid glycosides⁷ and triterpenoids^{8,9} from the rhizomes and roots of G. scabra. Here, we report the isolation and structure elucidation of six new secoiridoid glycosides, gentiascabraside A (1), 6β -hydroxyswertiajaposide A (2), 1-O- β -D-glucopyranosyl-4-epiamplexine (3), and scabrans G_3 (4), G_4 (5), and G_5 (6), together with a known compound 7 from the rhizomes and roots of G. scabra. Compound 7 was identified as swertiajaposide A by direct comparison with an authentic sample.¹⁰

* To whom correspondence should be addressed. Tel: +81-22-234-4181. Fax: +81-22-275-2013. E-mail: mkikuchi@tohoku-pharm.ac.jp.

Figure 1. $^{1}H^{-1}H COSY$ (bold lines) and HMBC (arrows) correlations for 1.

Results and Discussion

Gentiascabraside A (1) was obtained as an amorphous powder. Its molecular formula was determined as C₁₇H₂₄O₁₁ by HRFABMS. Acid hydrolysis of 1 gave D-glucose, which was confirmed by optical rotation using chiral detection by HPLC analysis. The ¹H NMR spectrum in DMSO- d_6 showed signals due to a methine [δ 3.27 (1H, m, H-9)], a methoxyl group [δ 3.51 (3H, s)], an oxymethylene [δ 4.79 (1H, dd, J = 12.5, 2.2 Hz, H-7a), 4.95 (1H, dd, J = 12.5, J)2.2 Hz, H-7b)], two acetal methines [δ 4.88 (1H, s, H-3), 5.25 (1H, d, J = 7.0 Hz, H-1)], a terminal vinyl group [δ 5.15 (1H, dd, J = 16.9, 1.2 Hz, H-10a), 5.20 (1H, dd, J = 9.9, 1.2 Hz, H-10b), 5.76 (1H, ddd, J = 16.9, 9.9, 7.0 Hz, H-8)], a trisubstituted double bond [δ 5.99 (1H, dd, J =2.2, 2.2 Hz, H-6)], and a hydroxyl proton [δ 6.58 (1H, s, OH-4)]. Furthermore, an anomeric proton signal [δ 4.56 (1H, d, J = 8.1 Hz, H-1')] was recognized. The coupling constant of an anomeric proton indicated that the glycosyl linkage is of β -configuration. The ¹³C NMR spectrum (DMSO- d_6) showed signals due to a β -D-glucopyranosyl group [8 61.1 (C-6'), 70.0 (C-4'), 73.0 (C-2'), 76.7 (C-3'), 77.0 (C-5'), 97.9 (C-1')] and a carbonyl group [δ 168.4 (C-11)]. By ¹H⁻¹H COSY and HMBC spectra, the planar structure of 1 was deduced to be as shown in Figure 1. Next, NOESY and difference ROE experiments were carried out on 1 in order to determine the stereochemistry of the molecule (Figure 2). In the NOESY spectrum (CD₃OD), cross-peaks were observed between H-1 α and H-3 α and between H-1' and the methoxyl group at C-3, suggesting that the β -Dglucopyranosyl moiety at C-1 and the methoxyl group at C-3 occurred on the same face (β) of the ring system. In the difference ROE experiment (DMSO- d_6), irradiation at δ 6.58 (OH-4) produced ROE enhancement in the signal of

Figure 2. NOEs and ROEs of 1.

H-3 α (δ 4.88), whereas irradiation at δ 5.76 (H-8) caused ROE enhancement in the signal of H-1 α (δ 5.25), establishing that the hydroxyl group at C-4 and the terminal vinyl group at C-9 were on the same face (α) of the ring system. From the above data, gentiascabraside A was elucidated to be as shown in formula **1**.

 6β -Hydroxyswertiajaposide A (2) was obtained as an amorphous powder. Acid hydrolysis of 2 gave D-glucose in the above manner. Compound 2 showed a very similar signal pattern to that of 7 in the ¹³C NMR spectrum. However, in contrast to 7, one more oxygenated methine signal was observed instead of a methylene one. The molecular formula was determined as C17H24O11 from HRFABMS. Consequently, 2 was deduced to be a compound in which the hydrogen in 7 was replaced by a hydroxyl group. The methylene carbon signal (δ 27.3) assignable to C-6 of 7 was shifted down to δ 61.8 in 2, suggesting that an additional hydroxyl group was located at the C-6 position. This was confirmed by the ¹H-¹H COSY spectrum, in which a cross-peak was observed between H-6 and H_2 -7. The configuration of the hydroxyl group at C-6 was determined to be β from the difference ROE experiment, in which irradiation at δ 5.78 (H-8) caused ROE enhancement in the signal of H-6 α . Accordingly, 6β -hydroxyswertiajaposide A was characterized as 2.

1-*O*-β-D-Glucopyranosyl-4-epiamplexine (**3**) had the molecular formula $C_{16}H_{26}O_9$ on the basis of HRFABMS. Acid hydrolysis of **3** gave D-glucose in the above manner. The ¹H and ¹³C NMR data of **3** closely resembled those of 1-*O*β-D-glucopyranosylamplexine (**8**)¹¹ except for some signals surrounding C-4. The ¹H-¹H COSY, HMQC, and HMBC data provided evidence of the same planar structure for **3** as that of **8**. The difference between **3** and **8** was traced to differences in the stereochemistry of the hydroxymethyl group at C-4. In the NOESY spectrum, a cross-peak was observed between H-4β and H-5β, and the configuration of the hydroxymethyl group at C-4 was determined to be α. Therefore, 1-*O*-β-D-glucopyranosyl-4-epiamplexine was a C-4 epimer of **8** as shown in formula **3**.

Scabran G₃ (4) was obtained as an amorphous powder. Its molecular formula was determined as $C_{28}H_{40}O_{19}$ by HRFABMS. The ¹³C NMR spectrum of 4 was similar to that of 6'-*O*- β -D-glucopyranosylgentiopicroside (9) isolated from the same plant,⁷ except for the presence of an additional hexosyl moiety and a difference in the chemical shift at the C-6" position [δ 70.1 (+7.3 ppm)] due to glycosylation.¹² Acid hydrolysis of 4 gave only D-glucose in the above manner. In the ¹H NMR spectrum of 4, three anomeric proton signals [δ 4.36 (1H, d, J = 7.8 Hz), 4.37 (1H, d, J = 7.8 Hz), and 4.67 (1H, d, J = 8.1 Hz)] were recognized. The coupling constants of three anomeric protons indicated that the glycosyl linkages are of β -configuration. These indicated that the additional β -D-glucopyranosyl moiety in **4** is attached to the hydroxyl group at C-6" in **9**. Consequently, the structure of scabran G_3 was determined to be **4**.

Scabran G₄ (**5**) had the molecular formula $C_{34}H_{50}O_{24}$ on the basis of HRFABMS. The ¹³C NMR spectrum of **5** was similar to that of **4**, except for the presence of an additional hexosyl group and a difference in the chemical shift at C-6''' [δ 70.1 (+7.3 ppm)] due to glycosylation.¹² In the ¹H NMR spectrum of **5**, four anomeric proton signals [δ 4.37 (1H, d, J = 8.1 Hz), 4.38 (1H, d, J = 8.1 Hz), 4.40 (1H, d, J = 8.1Hz), and 4.67 (1H, d, J = 8.1 Hz)] were recognized. Acid hydrolysis proved that four sugars in **5** are D-glucose in the above manner, and those linking forms were deduced to be β from the J value of those anomeric proton signals. Thus, scabran G₄ was elucidated to be as shown in formula **5**.

Scabran G₅ (**6**) was assigned the molecular formula $C_{40}H_{60}O_{29}$ using HRFABMS. The ¹³C NMR spectrum of **6** was similar to that of **5**, except for the presence of an additional hexosyl moiety and a difference in the chemical shift at C-6'''' [δ 70.0 (+7.2 ppm)] due to glycosylation.¹² In the ¹H NMR spectrum of **6**, five anomeric proton signals [δ 4.39 (1H, d, J = 8.1 Hz), 4.40 (1H, d, J = 8.1 Hz), 4.41 (1H, d, J = 8.1 Hz), 4.42 (1H, d, J = 8.1 Hz), and 4.68 (1H, d, J = 8.1 Hz)] were observed. Acid hydrolysis proved that five sugars in **6** are D-glucose. Therefore, scabran G₅ was characterized as **6**.

Experimental Section

General Experimental Procedures. ¹H (600 MHz) and ¹³C (150 MHz) NMR spectra were recorded on a JEOL JNM-LA 600 spectrometer with TMS as internal standard. Optical rotations were determined using a JASCO DIP-360 digital polarimeter. UV spectra were recorded with a Beckman DU-64 spectrophotometer. HRFABMS (positive ion mode) were recorded on a JEOL JMS-DX 303 mass spectrometer, using a glycerin matrix. Column chromatography was carried out on Kieselgel 60 (230–400 mesh, Merck) and Diaion HP-20 (Mitsubishi-Chemical). HPLC was performed by using a system comprised of a CCPS pump (Tosoh), an RI-8020 detector (Tosoh), and a JASCO OR-2090 plus chiral detector.

Plant Material. The dried rhizomes and roots of *Gentiana* scabra (from Jilin, China) were purchased from Uchida Wakanyaku Co., Ltd., Tokyo, Japan, in 1999. A voucher specimen (1999-08) is deposited in the laboratory of Tohoku Pharmaceutical University.

Extraction and Isolation. Dried rhizomes and roots of G. scabra (1.5 kg) were extracted with MeOH at room temperature. The MeOH extract (160.0 g) was successively extracted with CHCl₃, EtOAc, n-BuOH, and H₂O. The H₂O-soluble fraction was passed through a Diaion HP-20 column, and absorbed material was eluted with H₂O and MeOH. The MeOH elute fraction was concentrated. The residue (35.0 g)was chromatographed on a silica gel column using CHCl3-MeOH $-H_2O$ (30:10:1), and the eluate was separated into 73 fractions. Fraction 10 was purified by preparative HPLC [column, TSKgel ODS-120T (7.8 mm i.d. × 30 cm, Tosoh); column temperature, 40 °C; mobile phase, MeOH-H₂O (1:8); flow rate, 1.0 mL/min; detection, RI] to give 1 (2.3 mg), 2 (1.7 mg), 3 (2.2 mg), and 7 (3.0 mg). Fraction 56 was purified by preparative HPLC [column, TSKgel Amide-80 (7.8 mm i.d. \times 30 cm, Tosoh); column temperature, 40 °C; mobile phase, CH₃- $CN-H_2O$ (3:1); flow rate, 1.5 mL/min; detection, RI] to give 4(0.8 mg), 5 (0.7 mg), and 6 (0.5 mg).

H-1'), 3.51 (3H, s, OCH₃), 3.27 (1H, m, H-9); ¹³C NMR (DMSOd₆, 150 MHz) δ 168.4 (C, C-11), 135.8 (CH, C-8), 132.3 (C, C-5), 124.2 (CH, C-6), 118.6 (CH₂, C-10), 100.5 (CH, C-3), 97.9 (CH, C-1'), 94.4 (CH, C-1), 77.0 (CH, C-5'), 76.7 (CH, C-3'), 73.0 (CH, C-2'), 70.0 (CH, C-4'), 67.5 (CH₂, C-7), 66.2 (C, C-4), 61.1 (CH₂, C-6'), 55.0 (CH₃, OCH₃), 46.9 (CH, C-9); HRFABMS (positive ion mode) m/z 405.1428 ([M + H]⁺, calcd for C₁₇H₂₅O₁₁, 405.1397).

6β-Hydroxyswertiajaposide A (2): amorphous powder; $[\alpha]_{D}^{22}$ -88.1° (c 0.2, MeOH); UV (MeOH) λ_{max} (log ϵ) 212 (3.9) nm; ¹H NMR (CD₃OD, 600 MHz) δ 5.78 (1H, ddd, J = 16.9, 10.3, 8.8 Hz, H-8), 5.54 (1H, d, J = 1.2 Hz, H-3), 5.43 (1H, d, J = 4.1 Hz, H-1), 5.35 (1H, dd, J = 10.3, 1.5 Hz, H-10b), 5.33 (1H, ddd, J = 16.9, 1.5, 0.7 Hz, H-10a), 4.69 (1H, d, J = 7.8 Hz, H-1'), 4.44 (1H, dd, J = 12.7, 1.7 Hz, H-7b), 4.40 (1H, dd, J = 12.7, 2.7 Hz, H-7a), 4.14 (1H, dd, J = 2.7, 1.7 Hz, H-6), 3.87 (1H, dd, J = 12.0, 2.0 Hz, H-6'b), 3.66 (1H, dd, J = 12.0, 5.6 Hz, H-6'a), 3.51 (3H, s, OCH₃), 3.18 (1H, dd, J = 9.3, 8.1Hz, H-2'); ¹³C NMR (CD₃OD, 150 MHz) δ 163.3 (C, C-11), 153.0 (C, C-5), 134.6 (CH, C-8), 125.4 (C, C-4), 121.6 (CH₂, C-10), 99.2 (CH, C-1'), 99.5 (CH, C-3), 95.3 (CH, C-1), 78.5 (CH, C-5'), 78.0 (CH, C-3'), 74.7 (CH, C-2'), 73.4 (CH₂, C-7), 71.7 (CH, C-4'), 62.8 (CH₂, C-6'), 61.8 (CH, C-6), 56.7(CH₃, OCH₃), 46.8 (CH, C-9); HRFABMS (positive ion mode) m/z 427.1224 ([M + $Na]^+$, calcd for $C_{17}H_{24}O_{11}Na$, 427.1216).

1-O-β-D-Glucopyranosyl-4-epiamplexine (3): amorphous powder; $[\alpha]_D^{22} - 42.8^{\circ}$ (c 0.3, MeOH); ¹H NMR (CD₃OD, 600 MHz) δ 5.80 (1H, ddd, J = 17.3, 10.5, 7.6 Hz, H-8), 5.24 (1H, ddd, J = 17.3, 1.2, 1.2 Hz, H-10b), 5.16 (1H, dd, J = 11.5, 1.2Hz, H-10a), 4.29 (1H, dd, J = 11.5, 6.1 Hz, H-1b), 4.24 (1H, d, J = 7.8 Hz, H-1'), 4.17 (1H, dd, J = 11.5, 10.5 Hz, H-1a), 3.97 (1H, dd, J = 11.5, 6.2 Hz, H-3b), 3.85 (1H, dd, J = 11.7, 1.8)Hz, H-6'b), 3.74 (1H, dd, J = 11.5, 7.0 Hz, H-3a), 3.67 (1H, dd, J = 11.0, 11.0 Hz, H-6'a), 3.00 (1H, dd, J = 7.0, 6.2 Hz, H-4), 2.75 (1H, m, H-9), 2.39 (1H, m, H-5), 1.86 (1H, m, H-6b), 1.47 (1H, m, H-6a); ¹³C NMR (CD₃OD, 150 MHz) δ 176.2 (C, C-11), 138.3 (CH, C-8), 117.7 (CH₂, C-10), 104.3 (CH, C-1'), 78.1 (CH, C-5'), 78.0 (CH, C-3'), 75.1 (CH, C-2'), 71.7 (CH, C-4'), 70.9 (CH₂, C-1), 67.9 (CH₂, C-7), 62.9 (CH₂, C-6'), 59.9 (CH₂, C-3), 44.6 (CH, C-4), 43.3 (CH, C-9), 35.8 (CH, C-5), 31.6 (CH₂, C-6); HRFABMS (positive ion mode) m/z 363.1506 ([M + H]+, calcd for C₁₆H₂₇O₉, 363.1655).

Scabran G₃ (4): amorphous powder; $[\alpha]_D^{22} - 81.5^{\circ}$ (*c* 0.5, MeOH); UV (MeOH) λ_{max} (log ϵ) 252 (3.8), 270 (3.9) nm; ¹H NMR (CD₃OD, 600 MHz) ¹H NMR (CD₃OD, 600 MHz) δ 7.45 (1H, d, J = 1.2 Hz, H-3), 5.77 (1H, ddd, J = 17.3, 10.5, 6.8 Hz, H-8), 5.64 (1H, d, J = 3.2 Hz, H-1), 5.61 (1H, m, H-6), 5.24 (1H, ddd, J = 17.3, 1.5, 1.5 Hz, H-10b), 5.23 (1H, ddd, J =10.5, 1.5, 1.1 Hz, H-10a), 5.07 (1H, ddd, *J* = 17.6, 1.5, 1.2 Hz, H-7b), 5.00 (1H, ddd, J = 17.6, 3.4, 1.2 Hz, H-7a), 4.67 (1H, d, J = 8.1 Hz, H-1'), 4.37, 4.36 (each 1H, d, J = 7.8 Hz, H-1". H-1^{'''}), 4.16, 4.15 (each 1H, dd, *J* = 11.7, 2.0 Hz, H-6'b, H-6''b), 3.87 (1H, dd, J = 12.0, 2.0 Hz, H-6""b), 3.77, 3.76 (each 1H, dd, J = 11.7, 5.6 Hz, H-6'a, H-6"a), 3.67 (1H, dd, J = 12.0, 5.4 Hz, H-6‴a); ¹³C NMR (CD₃OD, 150 MHz) δ 166.4 (C, C-11), 150.9 (CH, C-3), 135.0 (CH, C-8), 127.2 (C, C-5), 118.8 (CH₂, C-10), 117.2 (CH, C-6), 105.2 (CH, C-1"), 105.0 (C, C-4), 104.9 (CH, C-1"'), 100.5 (CH, C-1'), 99.0 (CH, C-1), 78.1 (CH, C-3', C-3''), 78.0 (CH, C-5''), 77.9 (CH, C-3'''), 77.3, 77.1 (CH, C-5', C-5"), 75.1 (CH, C-2", C-2""), 74.6 (CH, C-2'), 71.7 (CH, C-4', C-4"), 71.6 (CH, C-4"), 70.9 (CH₂, C-7), 70.6 (CH₂, C-6'), 70.1 (CH₂, C-6"), 62.8 (CH₂, C-6""), 46.7 (CH, C-9); HRFABMS (positive ion mode) m/z 681.2259 ([M + H]⁺, calcd for C₂₈H₄₁O₁₉, 681.2242).

Scabran G₄ (5): amorphous powder; $[\alpha]_D^{29} - 58.7^\circ$ (*c* 0.06, MeOH); UV (MeOH) $\lambda_{\rm max}$ (log $\epsilon)$ 252 (3.9), 270 (3.9) nm; ¹H NMR (CD₃OD, 600 MHz) δ 7.46 (1H, d, J = 1.1 Hz, H-3), 5.77 (1H, ddd, J = 17.3, 10.5, 6.8 Hz, H-8), 5.64 (1H, d, J = 2.9 Hz, H-1), 5.61 (1H, m, H-6), 5.24 (1H, ddd, J = 17.3, 1.5, 1.5 Hz, H-10b), 5.22 (1H, ddd, J = 10.5, 1.5, 1.1 Hz, H-10a), 5.07 (1H, ddd, J = 17.6, 1.5, 1.1 Hz, H-7b), 5.01 (1H, ddd, J = 17.6, 3.3, 1.1 Hz, H-7a), 4.68 (1H, d, J = 8.1 Hz, H-1'), 4.40, 4.38, 4.38

(each 1H, d, *J* = 8.1 Hz, H-1", H-1"", H-1""), 4.16 (3H, br d, *J* = 11.7 Hz, H-6'b, H-6''b, H-6'''b), 3.87 (1H, dd, J = 11.7, 2.2Hz, H-6""b), 3.77 (3H, m, H-6'a, H-6"a, H-6"a), 3.68 (1H, dd, $J=11.7,\,5.5$ Hz, H-6″″a); $^{13}{\rm C}$ NMR (CD₃OD, 150 MHz) δ 166.4 (C, C-11), 150.9 (CH, C-3), 135.0 (CH, C-8), 127.2 (C, C-5), 118.8 (CH₂, C-10), 117.2 (CH, C-6), 105.1 (CH, C-1", C-1"), 105.0 (C, C-4), 104.9 (CH, C-1""), 100.5 (CH, C-1'), 99.0 (CH, 105.0 (C, C-4), 104.9 (CH, C-1), 100.5 (CH, C-1), 99.0 (CH, C-1), 78.0 (CH, C-3', C-3'', C-5'''), 77.9 (CH, C-3'''), 77.2, 77.1, 77.0 (CH, C-5', C-5'', C-5'''), 75.1 (CH, C-2'', C-2'''), 74.6 (CH, C-2'), 71.7 (CH, C-4', C-4'', C-4'''), 71.6 (CH, C-4'''), 70.9 (CH₂, C-7), 70.7, 70.5 (CH₂, C-6', C-6''), 70.1 (CH₂, C-6'''), 92.9 (CH₂, C-7), 70.7, 70.5 (CH₂, C-6', C-6''), 70.1 (CH₂, C-6''), 62.8 (CH₂, C-6""), 46.7 (CH, C-9); HRFABMS (positive ion mode) m/z 865.2588 ([M + Na]⁺, calcd for $C_{34}H_{50}O_{24}Na$, 865.2590).

Scabran G₅ (6): amorphous powder; $[\alpha]_D^{29}$ -52.2° (c 0.1, MeOH); UV (MeOH) λ_{max} (log $\hat{\epsilon}$) 252 (3.8), 270 (3.9) nm; ¹H NMR (CD₃OD, 600 MHz) δ 7.47 (1H, d, J = 1.1 Hz, H-3), 5.77 (1H, ddd, J = 17.3, 10.5, 6.8 Hz, H-8), 5.64 (1H, d, J = 2.9 Hz,H-1), 5.61 (1H, m, H-6), 5.24 (1H, ddd, J = 17.3, 1.5, 1.5 Hz, H-10b), 5.22 (1H, ddd, J = 10.5, 1.5, 1.1 Hz, H-10a), 5.07 (1H, ddd, J = 17.6, 1.5, 1.1 Hz, H-7b), 5.00 (1H, ddd, J = 17.6, 3.3, 1.1 Hz, H-7a), 4.68 (1H, d, J = 8.1 Hz, H-1'), 4.42, 4.41, 4.40, 4.39 (each 1H, d, J = 8.1 Hz, H-1", H-1", H-1"", H-1""), 4.17 (4H, br d, J = 11.4 Hz, H-6'b, H-6''b, H-6'''b, H-6'''b), 3.88 (1H, dd, J = 12.1, 2.2 Hz, H-6''''b), 3.79 (4H, m, H-6'a, H-6''a, H-6'''a, H-6''''a), 3.69 (1H, dd, J = 12.1, 5.1 Hz, H-6'''''a); ¹³C NMR (CD₃OD, 150 MHz) & 166.5 (C, C-11), 150.9 (CH, C-3), 134.9 (CH, C-8), 127.0 (C, C-5), 118.8 (CH₂, C-10), 117.2 (CH, C-6), 105.0 (C, C-4), 104.9 (CH, C-1", C-1"', C-1""), 104.8 (CH, C-1""), 100.4 (CH, C-1'), 99.0 (CH, C-1), 77.9 (CH, C-3', C-3", C-3", C-3", C-5""), 77.8 (CH, C-3", 77.1, 77.0, 76.9, 76.8 (CH, C-5', C-5'', C-5''', C-5''''), 75.0 (CH, C-2'', C-2''', C-2'''', C-2'''''), 74.4 (CH, C-2'), 71.6 (CH, C-4', C-4''', C-4'''', C-4''''), 71.5 (CH, C-4'''''), 70.9 (CH₂, C-7), 70.6, 70.5, 70.4 (CH₂, C-6', C-6", C-6""), 70.0 (CH2, C-6"""), 62.6 (CH2, C-6"""), 46.6 (CH, C-9); HRFABMS (positive ion mode) m/z 1027.3116 ([M + $Na]^+$, calcd for $C_{40}H_{60}O_{29}Na$, 1027.3118).

Acid Hydrolysis of 1-6. Each of the compounds, 1-6(ca. 0.3 mg), was refluxed with 5% HCl for 2 h. The reaction mixture was neutralized with Ag_2CO_3 and filtered. The solution was concentrated in vacuo and dried to give a sugar fraction. The sugar fraction was analyzed by HPLC under the following conditions: column, TSKgel Amide-80 (7.8 mm i.d. \times 30 cm, Tosoh); column temperature, 45 °C; mobile phase, CH₃CN-H₂O (3:1); flow rate, 1.5 mL/min; chiral detection. Identification of D-glucose present in the sugar fraction was carried out by the comparison of its retention time and optical rotation with that of an authentic sample; $t_{\rm R}$ (min) 38.4 (Dglucose, positive optical rotation).

Acknowledgment. We are grateful to Mr. S. Sato and Mr. T. Matsuki of this university for providing the mass and NMR spectra.

References and Notes

- (1) Ikeshiro, Y.; Tomita, Y. Planta Med. 1983, 48, 169-173.
- (2) Inouye, H.; Nakamura, Y. Yakugaku Zasshi 1971, 91, 755-759.
- (3) Ikeshiro, Y.; Mase, I.; Tomita, Y. Planta Med. 1990, 56, 101-103.
- (4) Rojas, A.; Bah, M.; Rojas, J. I.; Gutierrez, D. M. Planta Med. 2000,
- 66, 765–767.
 (5) Kumarasamy, Y.; Nahar, L.; Sarker, S. D. *Fitoterapia* **2003**, 74, 151– 154.
- (6) Oeztuerk, N.; Herekman-Demir, T.; Oeztuerk, Y.; Bozan, B.; Baser, K. H. C. *Phytomedicine* **1998**, *5*, 283–288.
 Kakuda, R.; Iijima, T.; Yaoita, Y.; Machida, K.; Kikuchi, M. J. Nat.

- (1) Kakuda, K.; Iijima, I.; Yaoita, Y.; Machida, K.; Kikuchi, M. J. Nat. Prod. 2001, 64, 1574–1575.
 (8) Kakuda, R.; Iijima, T.; Yaoita, Y.; Machida, K.; Kikuchi, M. Phy-tochemistry 2002, 59, 791–794.
 (9) Kakuda, R.; Ueno, C.; Kobayashi, N.; Kikuchi, Masaf.; Yaoita, Y.; Kikuchi, M. Nat. Med. 2004, 58, 22–26.
 (10) Kikuchi, M.; Kikuchi, M. Chem. Pharm. Bull. 2005, 53, 48–51.
 (11) Rosenanica, P. Nicalciti, M.; Miltari, C.; Balagzina, C.; Caloffi, C.
- (11) Rasoanaivo, P.; Nicoletti, M.; Multari, G.; Palazzino, G.; Galeffi, C. Fitoterapia 1994, 65, 38-43.
- (12) Kasai, R.; Suzuo, M.; Asakawa, J.; Tanaka, O. Tetrahedron Lett. 1977, 175 - 178.

NP058017O